
Halo Updates
(mpp_update_domains)

Zhi Liang

Jeff Durachta

Zhi.Liang@noaa.gov

Jeffrey.Durachta@noaa.gov

Overview

• Goal: Outline of the techniques and interfaces

o This presentation is not intended to make

programmers

• Gaea system overview

• What are halo updates?

• Communication Basics

• Why do we need them?

• Hiding complexity and increasing performance

• The mpp_domains halo update interfaces

• Auxiliary functions

Gaea Layout @ ORNL

1 PB

3 PB

10Gb NOAA R&D

Network

Gaea Compute Configuration

• 2 “Compute Partitions”
o C2: 2448 compute nodes

 Each node contains two 16 core AMD “Interlagos”

processors @ 2.2 GHz

 78,336 compute cores

 2GB DDR3 / core =>156.7TB aggregate memory

 721TF (Theoretical peak) / 565TF (Linpack)

o C1: 1312 compute nodes

 41,984 compute cores

 2GB DDR3 / core

 386TF (Theoretical peak) / ??? (Linpack)

o Both partitions use Cray’s latest “Gemini” interconnect

 Many more messages in flight than previous gen (Seastar)

 Dynamic Routing

Halo Updates: What and Why

• Programming model: Single Program

Multiple Data (SPMD)

• Data is decomposed into subdomains

assigned to each MPI Rank

Halo Updates: Why

• The memory space for each rank is disjoint

so explicit communication is required to

refresh (update) the data in the halo region

• The MPP_DOMAINS software layer

provides a relatively simple interface that

abstracts the complexities and helps

improve performance of a costly operation

o The MPP_DOMAINS layer is built on top of the mpp

layer which provides the fundamental point to point

communication

o MPP_DOMAINS keeps track of which ranks are

"connected"

Halo Updates: The Basics

• Communication is time consuming and

essentially "does no work“

o Post (non-blocking) receive

o Pack data to message buffers

Halo Updates: The Basics

• Communication is time consuming and

essentially "does no work"

o Post (non-blocking) send

Halo Updates: The Basics

• Communication is time consuming and

essentially "does no work“

o Blocking wait until data is committed to recv buffer

o Implies synchronization point

Halo Updates: The Basics

• Communication is time consuming and

essentially "does no work"

o Unpack the data into the halo region

Halo Updates: The Basics

• Communication is time consuming and

essentially "does no work“

o Post (non-blocking) receive

o Pack data to message buffers

Halo Updates: The Basics

• Communication is time consuming and

essentially "does no work"

o Post (non-blocking) send

Halo Updates: The Basics

• Communication is time consuming and

essentially "does no work“

o Blocking wait until data is committed to recv buffer

o Implies synchronization point

Halo Updates: The Basics

• Communication is time consuming and

essentially "does no work"

o Unpack the data into the halo region

Halo Updates: The Basics

• Communication is time consuming and

essentially "does no work“

o Post (non-blocking) receive

o Pack data to message buffers

Halo Updates: Increasing performance

• Communication is time consuming and

essentially "does no work"

o Post (non-blocking) send

Halo Updates: The Basics

• Communication is time consuming and

essentially "does no work“

o Blocking wait until data is committed to recv buffer

o Implies synchronization point

Halo Updates: The Basics

• Communication is time consuming and

essentially "does no work"

o Unpack the data into the halo region

Halo Updates: Increasing performance

• MPP_DOMAINS provides facilities for

aggregating messages

o Reduces much of the overhead costs to a single call

• MPP_DOMAINS also provides techniques

for fully asynchronous, non-blocking

communication

o This can be exploited to overlap communication with

computation on platforms that support it

o Exploitation requires data movement “offload

engines”

Halo Updates: Hiding complexity

• While basic grid communication is fairly

simple, the FMS infrastructure supports

some fairly complex grid structures

• For example, the atmosphere model uses a

"cubed sphere grid"

Halo Updates: Hiding complexity

Cubed Sphere

Basic Usage

• The mpp_domains_init() is called a part of

the in FMS initialization

• Individual model components then call
mpp_define_domains() or

mpp_define_mosaic()
o Each component may have its own decomposition

across the processor set (i.e. layout)

o Sets up the domain data structure that contains all

information about connectivity

• In its basic usage, mpp_update_domains() is

then used to update the halo region

mpp_define_domains
subroutine mpp_define_domains(global_indices, layout, domain,...)

From land_lad2/land_data.F90

 if(layout(1)==0 .AND. layout(2)==0) &

 call mpp_define_layout((/1,nlon,1,nlat/), mpp_npes()/ntiles, layout)

 if(layout(1)/=0 .AND. layout(2)==0)layout(2) = mpp_npes()/(layout(1)*ntiles)

 if(layout(1)==0 .AND. layout(2)/=0)layout(1) = mpp_npes()/(layout(2)*ntiles)

 ! define land model domain

 if (ntiles==1) then

 call mpp_define_domains ((/1,nlon, 1, nlat/), layout, lnd%domain, xhalo=1, yhalo=1,&

 xflags = CYCLIC_GLOBAL_DOMAIN, name = 'LAND MODEL')

 else

 call define_cube_mosaic ('LND', lnd%domain, layout, halo=1)

 endif

mpp_define_mosaic
subroutine mpp_define_mosaic(global_indices, layout, domain,

ntiles, num_contact, ...)

From atmos_cubed_sphere/tools/fv_mp_mod.F90

case (6) ! Cubed-Sphere

 type="Cubic: cubed-sphere"

 ntiles = 6

 num_contact = 12

 npes_per_tile = npes/ntiles

 call mpp_define_layout((/1,npx-1,1,npy-1/), npes_per_tile, layout)

 more setup definitions like calculating start and end pe for tile.......

 call mpp_define_mosaic(global_indices, layout2D, domain, ntiles, &

 ...<a lot more stuff to express a complex set of relationships>....)

• Data domain: the process subdomain

including the halo
o mpp_get_data_domain(domain, xbegin, xend, ybegin, yend,...)

• Compute domain: the process subdomain

excluding the halo
o mpp_get_compute_domain(domain, xbeing, xend, xsize, ybegin,

yend, ysize,...)

• Memory Domain: the allocated extent of the

process arrays
o mpp_get_memory_domain(domain, xbegin, xend, ybegin,

yend,...)

Compute, Data and Memory Domains

mpp_update_domains
subroutine mpp_update_domains(field, domain,...)

Message aggregation from ice_sis/ice_model.F90

 ! cannot be combined with updates below

 call mpp_update_domains(Ice%part_size, Domain)

and

 call mpp_update_domains(Ice%h_snow, Domain, complete=.false.)

 call mpp_update_domains(Ice%h_ice, Domain, complete=.false.)

 call mpp_update_domains(Ice%t_ice1, Domain, complete=.false.)

 call mpp_update_domains(Ice%t_ice2, Domain, complete=.true.)

• In addition to complete halo updates,

MPP_DOMAINS supports specialized updates

o Partial updates:

mpp_update_domains(ua , domain, whalo=1, ehalo=1,

shalo=1, nhalo=1, complete=.true.)

o Specific grid cell type (e.g. B, D, C):

mpp_update_domains(u, v, domain, gridtype=DGRID_NE)

o Combined operation (XY vector and paired scalars):

mpp_update_domains(divg_v, divg_u, domain,

flags=SCALAR_PAIR,....)

Additional Types of Updates

mpp_start/complete_update
subroutine mpp_start_update(field, domain,...)

subroutine mpp_complete_update(handle, field, domain,...)

Message / compute overlap from atmos_cubed_sphere/model/dyn_core.F90

 i_pack(1) = mpp_start_update_domains(delp, domain)

 i_pack(2) = mpp_start_update_domains(pt, domain)

!$omp parallel do default(shared)

 do j=js,jep1

 do i=is,iep1

 wk(i,j) = ptc(i,j,1)

 divg2(i,j) = wk(i,j)*vt(i,j,1)

 enddo

 do k=2,npz

 do i=is,iep1

 wk(i,j) = wk(i,j) + ptc(i,j,k)

 divg2(i,j) = divg2(i,j) + ptc(i,j,k)*vt(i,j,k)

 enddo

 do i=is,iep1

 divg2(i,j) = d2_divg*divg2(i,j)/wk(i,j)

 enddo

 enddo

 call mpp_complete_update_domains(i_pack(2), pt, domain)

 call geopk(ptop, pe, peln, delp, pkc, gz, phis, pt, pkz, npz, akap, .false.)

 call mpp_complete_update_domains(i_pack(1), delp, domain)

• mpp_global_sum(domain, field, flags,...)

o flag for bitwise and nonbitwise exact sum

• mpp_global_max/min(domain, field, locus,...)

o optional argument locus returns location of max/min

• mpp_global_field(domain, local, global, flags,...)

o local is the process field subdomain

o global is the desired global field

o flags to obtain specific subsets of the global field

Some Additional Functions

